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Universal aspects of vacancy-mediated disordering dynamics: The effect of external fields
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We investigate the disordering of an initially phase-segregated binary alloy, due to a highly mobile defect
which couples to an electric or gravitational field. Using both mean-field and Monte Carlo methods, we show
that the late stages of this process exhibit dynamic scaling, characterized by a set of exponents and scaling
functions. A new scaling variable emerges, associated with the field. While the scaling functions carry infor-
mation about the field and the boundary conditions, the exponents are universal. They can be computed
analytically, in excellent agreement with simulation results.

PACS numbgs): 05.40-a, 66.30.Lw, 82.20.Mj

[. INTRODUCTION filled with particles of two species, labeled as “black” and
“white,” or “up” and “down” spins. Starting from a per-

The kinetics of phase ordering in alloys, following a rapid fectly phase-segregated state, three distinct temporal regimes
temperature quench below the coexistence curve, has tradire observed, separated by two crossover times. During the
tionally attracted much interest, both in the physics and malate stages of this process, the number of broken bonds ex-
terial science communitiegl]. Remarkably, the temporal hibits dynamic scaling, characterized by a set of exponents
growth of ordered domains, as measured, e.g., via a timeand a scaling function. A mean-field theory allows for the
dependent structure factor, exhibits universal features, sudmalytic calculation of these features, in excellent agreement
as characteristic growth exponents and dynamic scaling, iwith simulations[7].
analogy to critical phenomena. The “inverse” problem, i.e., In order to test the range of universality of this model, we
the bulk disordering of a system after a rapithcreasein extend these studies to the case dfiasedrandom walker:
temperature or in response to highly mobile defects, is als@he vacancy or defect hops preferentially along one of the
an interesting problem, occurring in the context of erosion ollattice directions, as if subject to gravity. In the language of
corrosion phenomen@]. In addition, it is a testing ground electrostatics, the defect is charged, disordering an initial
for a fundamental question of statistical physics, namelyconfiguration of neutral atoms in the presence of an electric
how a system approaches its final steady state, starting frofield. We emphasize that thisi®mpletely equivalerib hav-
an initial nonstationarycondition. ing a neutral(or less massivyevacancy in a background of

In most real solids, microscopic atom-atom exchanges arparticles, all of which carry theamecharge(or larger mass
mediated by defects, such as vacancies or interstitial site&s in the unbiased case, there isfeedbackrom the back-

[3]. Thus, it is natural to describe such processes with thground to the defect, i.e., the motion of the vacancy is inde-
help of a three-state model, allowing for two species of atpendent of the local background configuration. However, the
oms and a certain number of empigefec} sites[4]. Va- choice of boundary conditions along the direction of the field
cancy concentrations are typically extremely small the  now becomes important: we will consider two cases, one in
order of 10°°). As a first step towards a deeper understandwhich spatial inhomogeneities persist in the long-time limit,
ing of disordering dynamics, we will neglect any asymme-and another which approaches a homogeneous steady state.
tries in the microscopics of the two atom species, leavindntriguingly, in both cases the three temporal regimes noted
them for consideration at a later stajgd. Thus, our study before are still clearly observable. Our key goal is to explore
will be based on an Ising model with a very small admixtureto what extent scaling functions and exponentsianieersal

of empty sites, namely, aingle vacancy, undergoing an i.e., independent of boundary conditions and bias. Employ-
“up-quench from zero to infinite temperature. Since we ing exact results, a mean-field theory and Monte Carlo simu-
wish to describe particles and holes, the dynamics will confations, we find that the scalingxponentsare completely
serve the number of each species separately. Only particlemiversal but that the scalindunctionscan depend sensi-
hole exchanges will be permitted, in order to model the vatively on the boundary conditions, through a new scaling
cancy mechanism. We should note for completeness that variable which involves the bias.

number of investigations have focused amwn-quenchem The paper is organized as follows. In Sec. Il, we define
similar models, i.e., vacancy-mediated domain grojéth our model, discuss the associated boundary conditions and

An alternate view of our study addresses the effect of dantroduce control parameters and observables of interest. We
random walker on its background medium. Each step of théhen turn to our findings. In Sec. lll, we set the scene by
walker displaces part of the background, leaving tracks simieharacterizing the final steady states which are exactly
lar to a beachcomber in the sand. These tracks can be morknown. On the basis of Monte Carlo data, we then demon-
tored and display their own dynamics. In the simplest casatrate the emergence of three temporal regimes and the sepa-
[7], the walker is a Brownian vacancy, exploring a latticeration of time scales between them. This observation forms
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the basis of a mean-field theory, to be introduced in Sec. Vsection that, under BWBC, the system approachesan-
Its scaling predictions are compared to detailed Monte Carldibrium state in which all transport currents have subsided. In
simulations in the following section. We conclude with somecontrast, periodic boundary conditions are incompatible with
comments and open questions. a global Hamiltonian, so that the steady state isoaequi-
librium one, carrying a net mass current.
The two control parameters for the Monte Carlo simula-
II. MODEL tions will be the field strengtlt and the system sizke. To

We begin by summarizing the discrete model underlyingmonitor the evolution of the system, we measure a “disorder
the Monte Carlo simulations. It is defined on a two- Parameter,” namely, the number of broken bonde.,
dimensional(2D) square lattice of dimensiorisxL. Each ~ black-white nearest-neighbor pairsi(L,E;t) [7], as a func-
lattice site is denoted by a pair of integers (x,y), and can  tion of time t. More detailed information is carried by the
be occupied by either a black particle, a white particle, or docal hole and magnetization densities, defined, respectively,
vacancy. Multiple occupancy is forbidden. Thus the configu-2S
rations of the model can be described by a set of spin vari- _ _
ables{a,} which can take three values;=+1 (—1) for a ¢(r’t):<50r'o>’ (r.)=(o). @)
black (white) particle, ando,=0 for a vacancy. To model ] ]
the minute concentrations of vacancies in real systems, we1ere, (-) denotes the configurational average. The
focus on the case ofsinglehole. The number of black\*) Kroneckers$ ensures that lattice siteis the one occupied by

and white (\") particles is conserved and equal? =N~ the vacancy. Nonzero values #{r,t) indicate anexcesf
—N/2 [8]. In the conclusions, we return briefly to the ques—Wh'te or black particles at lattice site which is also a sen-
tion of higher vacancy concentrations. sitive measure of the disordering process. The full time de-

The initial configuration is perfectly phase segregatedPendence of these densities can in general only be computed
Black and white particles each fill one half of the system Within a mean-field approach. However, their stationary
with a sharp flat interface between them, chosen to lie horiforms are easily found from the known steady-state distribu-
zontally along thex axis. The vacancy is located at the in- ions, as we will presently see. o
terface. Even though this structure is that of a ferromagneti- We finally note that, for the analytic part of our work, itis
cally ordered state, the details of the particle-particleStraightforward to generalize our modeldalimensions: De-
interactions are not important, since we will be interested if0ting a lattice site by=(x,, ... Xq-1,Xq=Y), the field
upguenches to infinite temperatufe= . Thus, the vacancy Selects aone-dimensionasubspace, with reflecting or peri-
moves independently of its local environment. However, it is0dic boundary conditions, along the direction. The d
subject to a bia&, alignedtransverseo the initial interface, ~—1)-dimensional transverse subspace retains periodic
i.e., upwards along thépositive y axis. This is of course Poundaries.
equivalent to the particles experiencing an external gravita-
tional or electric field pointing along-y. We stress that a . EXACT RESULTS: THE STEADY STATES
factor 1T has been absorbed into the paramégr.e., we
are considering thénigh-temperature, high-field limiof a
more complex interacting system.

At each Monte Carlo time stefMCS), one of the four
nearest neighbors of the vacancy is chosen at random. T
exchange is performed using Metropolif9] rates:
min{1,e52%}, modeling alocal electrostatic or gravitational

An exact solution of our model involves knowledge of the
full time-dependent distribution?({o},t), for the prob-
ability of finding configuration{s,} at timet. This requires
ﬁ'@ding all eigenvalues and eigenvectors of the underlying
master equation

potential. Herepy=0,*1 is the change in thg coordinate aP{ o, t)=2, (W[ {o Mo IP{o}.t)

of the vacancy, in units of the lattice constaniThus, moves {o]}

againstthe field are exponentially suppressed while all oth-

ers are accepted. No particle-particle exchanges are allowed. ~Wl{o}[{o/}IP({or}, 1)} @)

Next, we specify the boundary conditions. In combination
with the bias, they determine whether any spatial inhomogetiere, W[{o}|{o{}] denotes the transition rate, per unit
neities survive in the long-time limit, with potential conse- time, from configuratiof o} into a new configuratiofoy }
guences for scaling exponents or functions. In the unbiase@hich may differ only by one vacancy hop. In discrete time,
case, the stationary state is completely unifgith and the it is just the Metropolis rate specified above. Even though
choice of boundary conditions affects at most nonuniversakd. (2) is only linear in the probabilities, a complete solution
amplitudes. To test the effect of spatial innomogeneities, wés usually feasible only for systems which are either very
consider two scenarios, namely, reflectiatgo referred to as small (L=3) or restricted to one dimension. Both cases are
“brick wall” (BWBC)] or periodic(PBC) boundary condi- only of limited interest here. However, it is often possible to
tions for the top and bottom edges. The right and left bounddetermine a particular eigenvector, namely, the one associ-
aries, being aligned with the drive, are not expected to play ated with the(nondegenerajesigenvalue zero: this provides
significant role; we choose them to be periodic in both casesis with thestationary limits P,({o,})=lim;_..P({o\},1),
These two scenarios differ in two important respects. Firstpf the full distributions.
reflecting boundary conditions allow some spatial inhomoge- This procedure is particularly simple for the case of brick
neities to persist, while periodic boundary conditions lead towall (reflecting boundary conditions. Here, we can immedi-
homogeneous distributions. Second, we will see in the nexately write down the internal energthe “Hamiltonian”) of
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the system, being the electrostatic energy of a singl
charge in a uniform electric field. ThusP,({o}})
ocexp[Eranéar’O] is just the associated equilibrium Boltz-

mann factor. Since interparticle interactions are restricted tc
the excluded volume constrair®,, is “color blind,” i.e., it
gives equal weight to all configurations pérticles at fixed
vacancy position. Of course, any additional interactions

could easily be incorporated into the Hamiltonian. ‘

In contrast, the toroidal geometry of periodic boundary 0 MCS 10° MCS 10* MCS
conditions, in combination with a uniform drive, prevents the
existence of a globatjme-independenpotential. Therefore,
the steady state is far from equilibrium. Yet fortunately, the
stationary distribution is still exactly knowji0] and even
simpler: P, is completelyuniform, giving equal weight tall
configurations of vacancgnd particles. In this case, how-
ever, it is entirely unknown how to generalize this solution to
more complex interparticle interactions.

Given the stationary distributions, the steady-state
densities defined via ¢q(r)=Ilim,_..¢(r,t) and ,(r)
=lim,_,..4(r,t), are easily computed. For reflecting bound-
ary conditions,¢, is spatiallyinhomogeneouydgollowing the 10° MCS 10 MCS 107 MCS
usual exponential profile. Since the steady state is color
blind, the magnetization density is uniform. For simplicity, ~ FIG. 1. Sequence of snapshots showing the disordering process

we place the coordinate origin into the center of the systemPf 40X 40 system withe=0.05 and BWBC. The black and gray
Thus squares represent the two types of partickes-(-1) and the white

square denotes the vacancy=0). The configurations were re-
corded after 0, 1} 1¢%, 1¢°, 1¢°, and 16 MCS.

¢o(r)=Cexp(Eay) and ¢(r)=0, )
IV. SEPARATION OF TIME SCALES
where the normalizationC=sinhEa/2)/{L9 ! sinf{Ea(L o o _ ) _
+1)/2]} ensures that the system contains only one vacancy. Our aim in this section is to motivate the key ingredient
The second equation just reflects the fact that there are equithich will be required for most of our mean-field results,
numbers of positive and negative particf&$ It is notewor- ~ namely, that the vacancy equilibrates on a much faster time
thy, and may not be entirely trivial at first sight, that the scale than the particles. Since this observation will be based

inhomogeneities inp leave no trace at all in the magnetiza- ON Monte Carlo data, we first summarize the parameters of

tion distribution. our numerical work.
The corresponding results for periodic boundary condi- We have performed detailed simulations of our model,
tions are even simpler: using two-dimensional square lattices withranging from

20 to 60. The lattice constant is set to 1. Both types of
boundary conditions, reflecting and periodic, have been
1 . . ..
do(r)=— and ¢(r)=0. (4) implemented. For reflecting boundary conditions, the exter-
Ld nal field varies between 0 and 1.0. Larger value€air L
equilibrate too slowly for our computational resources. For
Here, ¢,(r) is also uniform, reflecting a single vacancy in a periodic boundary conditions, equilibration takes place much
system ofL¢ sites. faster, and therefords varies between 0 and 10.0. Our data
Finally, the saturation value for the number of brokenare averaged over 16 10° realizations, depending on the
bonds is readily found, since the particle configurations indesired accuracy. The length of the runs varies with system
the steady state are completely random. Since each of tigize, up to a maximum of foMCS.

four types of particle-particle bonds is equally likely, to lead- ~ To obtain a visual impression of the disordering process,
ing order in 1L, we obtain Fig. 1 shows the evolution of a typical configuration, in a
40X 40 lattice withE=0.05 and brickwall boundary condi-

d tions. The initial interface, completely smooth tat0, be-
Asof L,E)=Ilim A(L,E;t)= EL"[1+ o(L™ bl gins to break up as increasing numbers of particles are trans-
toe ported into the oppositely colored half of the system.

Eventually, the system becomes completely disordered.
The corrections include surface terms which distinguish theClearly, the number of broken bondd(L,E;t), is a suitable
boundary conditions: for BWBC, we findO(L 1)= guantitative measure for the growing disorder, shown in Fig.
—29%1/(dL) while the leading correction for PBC is only 2 for the same set of system parameters.
1/L9. The vacancy plays an even smaller role since it affects Similar to the unbiased ca$&], it clearly exhibits three
only 2d bonds: this contribution is neglected here. Havingregimes, drawn schematically in the inset: an early regime
established the key features of the steady state, we now tukh), an intermediate regimél), and a late or saturation re-
to simulation results. gime (lll) in which the system has reached steady state. As
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i a that —L/2<x;<L/2 fori=1,2,...d. Letting§/ denote the
1000 unit vector along the direction dE, we finally obtain the
basic equations of motion
2 7
3 T b (r,)=VIV$(r,H) ~Eye(r,0], 5
3 /
. 1““;,/ AT = VA OV I, = $(r,HV (1 1)
M/ +EYA(r, ) g(r,h)]. ®)
, Here, V is the d-dimensional gradient. Clearly, both equa-
VI —— tions take the form of continuity equations, reflecting the
10° 1024 (MCs) 10 10°

conservation laws. The right-hand sides are thegative
gradients of the associated hole and magnetization currents.
The inset shows the emergence of an early regifiean interme- In the field-free IimitE_=O_, these are jl_,l_st the results of_ Ref.
diate, or scaling, regimél), and a late or saturation regingl).  L/)- Of course, the bias induces additional terms which re-
See text for additional details. flect systematic Ohmic currents: Since particles can only
move when the vacancy is present, the extragnetization

the system size increases, the intermediate regime spanscarrent—Eyay is proportional tog. In contrast, thenole

widening time range, suggesting that the three regimes argrrentEy is independent of the local particle background,
temporally well separated. In practice, this is already the casgs one should have expected. We also note hereRiets
for L=20. This separation of time scales is also observed fogimensions of inverse length. This suggests thatdingen-
larger values of the bias. Physically, the three regimes argjonlesscombination E will emerge as a convenient scaling
characterized as follows. For early timgegime ), the va-  yariable.

cancy is still localized in the vicinity of its starting point. Equations(5) and (6) have to be supplemented with the

Given the properties of random walks, this regime is ex-constraints on the total hole and parti€8 numbers
pected to depend strongly on the dimensionality. After a time

of O(L?), however, the vacancy has explored the whole sys-
tem and is effectively equilibrated. This marks the onset of fv¢(r,t)=1 and fv‘/’(r’t)zo- )
the intermediate regime. In contrast, the particle distribution
is still strongly inhomogeneous, equilibrating only upon en-Here, V=9 is the volume of the system. Next, we consider
tering the saturation regime. A completely analogous picturghe boundary conditions. In the PBC case, the solutions of
emerges for periodic boundary conditions. Egs. (5) and (6) must be fully periodic functions of, with

Our goal in the following is to test for dynamic scaling. periodL. For reflecting boundary conditions, the periodicity
Since our data involve the three variables, andt, as well  of the solutions is restricted to the transverse subspace.
as two types of boundary conditions, the appropriate scaling\long E we demand instead that the hole and magnetization
forms may not bea priori obvious. We shall therefore first cyrrentsvanish on the boundary= +L/2.

consider an analytic approach, before turning to a detailed Finally, we specify the initial conditions. The vacancy

FIG. 2. Plot ofA(L,E;t) vst, for L=40, E=0.05, and BWBC.

comparison with the data. starts at the origin
V. MEAN-FIELD THEORY @(r,00=46(r) 8
A. The equations of motion and the particles are perfectly phase separated:

Since an exact solution of the full master equation is not _
available, we seek a simpler formulation of the dynamics. ¥(r,0)=26(y) - 1. ©)

For our purposes, a set of equations of motion for the tWoryig completes the discussion of the equations of motion and
conserved densitiesp and ¢, provides a suitable starting e constraints. We now focus on their solution.
point. We immediately focus on thé-dimensional case. A

spatially discreteversion of the desired equations is easily
obtained from the master equation, via the definifibn Not
surprisingly, the excluded volume interaction mixes correla- As a starting point, we first establish the steady-state so-
tion functions of different orders, generating the usuallutions of Eqgs.(5) and (6). When turning to the full time
BBGKY hierarchy. To obtain a closed set of equations, adependence, progress is only possible if we simplify the
mean-fieldapproximation is required: higher correlations areequations of motion by invoking the separation of time
approximated by products of appropriate single-point averscales. We shall mostly focus dmick wall boundary condi-
ages. Finally, we take the continuum limit, by letting the tions, since this situation is physically more complex, as we
lattice constang vanish at fixedphysicalsystem sizd. and  shall shortly see. At the end, we briefly summarize our re-
field E. The microscopic time scale is identified wii/2d. sults for the fully periodic case.

Thus, the resulting densities are functions ofantinuous Anticipating inhomogeneities along thedirection only,
d-dimensional coordinate=(xy, ... Xq4-1,Xq=Y) and time  due to the bias, we seedteady-statesolutions of the form

t. The spatial origin is chosen at the center of the system se(r,t) = ¢o(y) andy(r,t) = ,(y). Equation(5) can now be

B. Solutions
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FIG. 3. Simulation data for the steady state hole profile with FIG. 4. Simulation data for magnetization density profile with

=20 andE=0.01(+), 0.05(x), 0.10¢), and 0.15(), BWBC. ~ L=20, E=0.1, and BWBC after 1{+), 5x10%(X), 10°(),

The dashed lines denote the mean-field profiles, Bg.and(11),  3X10°(0), 5x10°(M), 7x10°(O), and 16(®) MCS. The
at the same parameter values. dashed lines show the corresponding mean-field profiles based on

Eq. (14). See text for details.

integrated once, and the reflecting boundary conditions force
the integration constant, i.e., the hole current, to zero. wavhich ensures that the magnetization current through the

can immediately integrate again, whence ends of the system vanishes. _
This differential equation can be reduced to an eigenvalue
do(Y)=CexpEy). (10 problem with a complete and orthonormal set of eigenfunc-

o N tions{U,(y)} which are linear combinations of Bessel func-
The constan€ follows from the normalization conditiof¥):  tions. The eigenvalues, are real, discrete, and strictly posi-
tive. Deferring all mathematical details to the Appendix, we

B EL 11 only quote the form of the solution, expressed as an eigen-
2L9sinh(EL/2) : function expansion:
Not surprisingly, this expression is just the continuum limit Wy )= E AU (y)exp — kt). (14)

of the exact result, Eq3). One should note the emergence of

the conjectured scaling variableE. In Fig. 3, we compare

the mean-field profiles fdr =20 and a range d&’'s with the ~ The expansion coefficients, are chosen so as to match the

corresponding Monte Carlo data. The agreement is clearlinitial condition (9).

excellent. Finally, a similar integration of E(), using Eq. Combined with the explicit expressions for its constitu-

(10), yields ,(y) =0, also consistent with the exact form. ents(see the appendice£q. (14) is exact within our mean-
Unfortunately, the solution of the time-dependent equafield approach. It agrees remarkably well with Monte Carlo

tions is not so simple. The full solutiog(r,t) of Eq. (5)  data, as demonstrated by Fig. 4. There, we compare the sum

must be found and inserted into E@). The latter poses a of the first 1000 terms in Eq14), for several values of,

formidable problem: even though it is a linear, second ordewith simulation results. A single fit parameter is required,

partial differential equation of parabolic type, its coefficientswhich converts into the number of MCS. One sees clearly

are rather complicated functions of space and time. Fortuhow the initially phase-segregated system disorders with

nately, a complete solution is possible if we restrict our at-time.

tention to theintermediate and lateegimes. Here, the va- Having established the structure of the densities, we turn

cancy density has already reached steady state, so that ority the disorder parameter. Being the number of broken

the purely exponentiap,(y) enters into Eq(6). Of course, bonds, it is directly related to thénearest-neighborising

the reduced equation should be supplemented with the initialenergy” of our model (—X, ;yo,0,/). Since the con-

condition (9). Symmetry considerations as well as the datatinuum limit of the latter is proportlonal tdyy? [11], we

suggest that the magnetization density is uniform transversebtain[7]

to E, so that we seek a solution of the forma(r,t)

=y(y,t). Letting 9 denote the partial derivative with respect e 9 d 4 E J’“—’Z 2 d-1

toy, we arrive at a much simpler version of E6), describ- ALEY=5L91-1 e dy ¢°(y,t) [+ O(L" 7).

ing the magnetization density at intermediate and late times: (15)
(Y, 1) = do(y)dp(y,1)]. (12 We emphasize that the boundary conditions only affect sur-

face terms. These will be neglected in the following, leading
It is SUbjeCt to the initial Conditior(g) and the brick wall On|y to small errors sincé =20 in the data. To the same
boundary condition accuracy, the initial condition for is just A(L,E;0) =0
Using Eq.(14) and carrying out the integral, we find the time
evolution of the disorder parameter, forick wall boundary

L
al//( iE’t) =0 13 Conditions
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d 1 = to(L,E)=x; '=L9"274(LE). (20)
AR(L,E;t)zzLd -2 > AZexp(—2knt)|. (16)
n=1 The limits of the scaling functior’rcEgIl are discussed in

Here, we have introduced a subsciiptreflecting or P (pe-  the appendices: It approaches its field-free limit vanish-
riodic) to distinguish the two types of boundary conditions. iNg LE and increases exponentially witte in the opposite

We conclude by focusing briefly on the casefolly pe-  limit, reflecting the increasing confinement of the vacancy.
riodic boundary conditions. The steady-state solutions otVe already note one of our key results here, namely, the
Egs. (5) and (6), consistent with the constraintg), are =~ €mergence of aewscaling variabld_E. Its physical origin
bo(r)=1/1LY and ¢,(r)=0. To obtain the time-dependent is clear: it determines how easily the vacancy can escape
excess densityy(r,t), we invoke the separation of time from the top ¢=L/2) edge of the system, where the field
scales again. Noting that the vacancy density has equilibratd§nds to localize it, in order to travel to the center of the
at the beginning of the intermediate regime, we insert itsSyStém where most of the disordering is taking place.

steady-state forn,, into Eq. (6), whence It is interesting to contrast the behavior of the disorder
parameter, and hence the scaling functfgpfor “late” and
Ap(r )=V do(V+EY) ¢(r,t)]. “early” times, t/t;>1 andt/t.<1 (but already within the

intermediate regime respectively. For late times, the disor-
This simplified form holds in the intermediate and late re-der parameter has saturated so thaj lim7x(x,y) =d/2 in-
gimes. A Galilei transformation=r’ -+ E¢o§/t recasts it as dependent ok=LE. The short-time limit requires some care

an ordinary diffusion equation, with diffusion coefficient since Eq.(16) does not converge well there. However, using
bo: a Poisson resummatiaisee the appendices for detailsie

can recast it in an alternate form that converges rapidly for
Gp(r',t)= dV2(r' 1). (17 small {=t/t,:

Quite remarkably, we observe that all effects of the field d 8
disappear in a suitably chosemmovingframe. Thus, the AR(L,E;t):—Ld—\/ﬁ{l+0(exp(—w2/§2))}.
solution of Eq.(17) and the accompanying disorder param- 27 m

eter can be read off immediate]¢2] from Ref.[7]. In the (21)
original frame, the whole profiles(r,t) drifts with velocity
—EL~ Y. Of course, no such drift is observed.itp(L,E;t),
by virtue of the spatial integration in E@L5):

Thus, we conclude that the disorder parameter increases as a
power law,t?, for short times, with an exponept=1/2. The
short-timescale factor exhibits a similar scaling form as the
late crossover time
exp(—2x,t)
w2 n=13,... n2 ’ t(L,E)=L9"27(LE). (22)
(18)

d 8
Ap(LEi)= 5L 1= —

o) dia However, we emphasize that its scaling functiandiffers
where k,=(27n)*/L%"2. from 7. in its dependence obE. This feature finds its origin
This completes the discussion of our mean-field equationgy  the short-time limit of the scaling function,

and their solutions. We now turn to the underlying scalingnmyw Fr(x,y)=Gr(X)y¥? expressed by Eq(21): The

behavior and compare it to Monte Carlo data. presence of the second argument LE, leads to the non-
trivial prefactorGg(x) which translates between the two scal-
VI. DYNAMIC SCALING: ANALYTIC PREDICTIONS ing functionstg and 7.
AND NUMERICAL TESTS Before turning to a comparison with the data, we first

contrast Eqs(19)—(22) with the corresponding results for

In this section, we extract the scaling forms for the num-periodic boundary conditions

ber of broken bondsA(L,E;t). We begin with Eq(16) for
brick wall boundary condit_ions. In the appendices, it is AP(L’E;t):Ld}—P(tL—(d+2))ELd]_-P(t/tC)_ (23)
shown that both the coefficients, and the eigenvalues,,
exhibit characteristic Scaling formﬁn is a function of the All dependence ofE disappearj‘]ere: The Sca"ng function
new scaling variablé E alone, while the eigenvalues obey Fp can be found in Ref.7], and the late crossover tintigis
_L-@+2)g (LE) just L9%2. A Poisson resummation yields the short-time be-
“n Gn(LE). havior Apo(d/2)LOt/t{1+O(exp a2}, for {=tit,
Therefore, the scaling form ofd(L,E;t) is apparent, <1 Thus, we also find a power law increase hetpt”,
namely, ywth_ the sameexponeni3= 1_/2. These predlctlons are testeo_l
in Figs. 5 and 6, for periodic and reflecting boundary condi-
Ag(L,E;t)=L9Fx(LE,t/t,), (19) tions, respectively.

In Fig. 5(a), we show the disorder parametdp, for one
where Fy is an appropriate scaling function. The temporalsystem size buseveralvalues ofE. Some slight deviations
scale factort, is itself still a function ofLE and can be are observable at short times, before the vacancy density
chosen in different ways. Here, we focus on the crossoveequilibrates. In the intermediate and late regimes, however, it
from the intermediate to the saturation regime and define is quite striking, but entirely consistent with our expecta-
as a measure for the late crossover time tions, that all data points fall onto the same curve, without
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FIG. 5. Plot of the total number of broken bonds with PB&.Plot of A(L,E;t) vst of 40X 40 with E=0.00(+), 0.10(x), 1.00¢),
and 10.00J). (b) Scaling plot ofA(L,E;t)/L? vst/L* for L=30—60 with E=0.00, 1.00, and 10.0.

any scaling being required. In Fig(l5, we show a scaling Remarkably, we find that thexponentsy and z are univer-

plot for several L and EExcellent data collapse is observed sal, i.e., independent of boundary conditions and drive. Our

in the intermediate and late regimes, where our scaling preresults, «=d which is exact andz=d+2 which follows

dictions are expected to hold. Again, we emphasize that thtrom our mean-field theory, are completely consistent with

scaled axes depend only anbut not onE. the Monte Carlo data and agree with the corresponding ex-
Figure 6a) shows the disorder parametdi, for reflect-  ponents for the unbiased cagsd. The short-time behavior

ing boundary conditions. Several valueskoére plotted, for  can be written as

L=40. As anticipated, the mixing process proceeds more

slowly for larger values oF, since these tend to confine the A(LE)~L(t/75)%, (25

vacancy more strongly to the upper edge=(+L/2) of the . . Y S .
. : ; : ) with a “growth” exponentB=1/2 which is also manifestly
system. The corresponding scaling plotis shown in Fb):6 universal. The additional exponeatis related to the others

Here, several values df and E are chosen such thatE X - - ] )
= 2.0 remaingonstant The data collapse in the intermediate via the consistency cond|t|on4_(L,E,t_c)~A(L_,E,t—>_0<>),
whenceo=d—2zB=(d—2)/2. This scaling law is obviously

arg late regimes lends full support to our prediction, Eq'satisfied by our results.

In contrast to the exponents, the scalfogctionsF and r
are profoundly affected by the bias and the boundary condi-
tions. For PBC, we just recover the results of the unbiased
Sase, whereas a nontrivial dependence on a new scaling vari-
t@ble,LE, emerges in the brick wall case.

Focusing on the intermediate regimM®(L?)<t<t.],
Figs. §b) and &b) show very clearly that the disorder pa-
rameter increases agawer lawthere, A(L,E;t)>t?. Since
this behavior persists over at least three decades, we ¢
extract a reliable numerical estimate for the exponent, resul
ing in B=0.5+0.01 for both reflecting and for periodic
boundary conditions, in agreement with our prediction. ViIl. CONCLUSIONS

Our results so far can be summarized more succinctly. |, this paper we have analyzed the vacancy-mediated dis-
Defining a set of characteristic exponents and scaling func; rdering of a binary alloy, in response to an upquench from
tions, the scaling of the disorder parameter, for both types 0} 1 infinite temperature. The system is placed in a gravi-
boundary conditions, can be written as tational or electric field, and two types of boundary condi-

tions, reflecting(“brick wall” ) and periodic, are studied.

A(LE;t)~L*F(LE,t/t;) with t.(L,E)~L*r(LE). Starting from a perfectly phase-segregated initial configura-

(24) tion, the vacancy mediates atom exchanges, leading to fully

2001 1.00f

1000y
[S:
.| ! ]
=z 0.10 slope=0.5
100y -
0.0t
102 10% 105 108 108 10® w0t 102
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FIG. 6. Plot of the total number of broken bonds with BWR@&).Plot of A(L,E;t) vst of 40X 40 with E=0.00(+), 0.10(X), 0.20¢),
0.30(d), and 0.50M). (b) The scaling plot ofA(L,E;t)/L? vst/L* for L=30(+), 40(X), 50(+), and 60{J) with LE=2.0.
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disorderedexactly knowrfinal states. For brickwall bound- P. Zia, T. J. Newman, M. Howard, and W. Loinaz for helpful
ary conditions, the final state is aguilibrium one, charac- discussions. This research is supported in part by the Na-
terized by a Boltzmann distribution and an exponential holeional Science Foundation through Grant No. DMR-

density profile. In contrast, the steady state established bg727574, and by the Deutsche Forschungsgemeinschaft
periodic boundary conditions is ronequilibriumone, with  through Grant No. Zi209/5-1.

homogeneous configurational distribution and profiles. Using

Monte Carlo simulatio_ns, we monit.or the time. evolution of APPENDIX A: FULL SOLUTION

the sy_stem by measuring local profiles and a disorder param- FOR THE MAGNETIZATION DENSITY

eter, i.e., the number of broken bonds. For both types of

boundary conditions, three temporal regimes are identified: In this appendix, we present the mathematical details of
an early one, where the vacancy has not reached the boungllving Eq.(12) for brickwall boundary conditions, restricted
aries of the system, an intermediate one in which the vacandp the intermediate and late stages of the disordering process,
has already equilibrated, but the particle distributions are still.e., O(L?)<t. Thus, in the following, “early” refers to
inhomogeneous, and a late regime where the system hé#isnes at the onset of the intermediate regime while “late”
reached steady state. To predict scaling exponents and scéimes are deeply within the saturation region. To recall, we
ing functions, we develop a theoretical description in termsseek a solutiong(y,t), to the partial differential equation

of a set of mean-field equations of motion for the local den-

sities. Invoking the separation of time scales, the mean-field APy, t)=dl do(y) Iy, 1], (A1)
equations can be solved exactly in the intermediate and late

time regimes, providing us with explicit expressions for theVNere

observables of interest. We find that the disorder parameter

exhibits dynamic scaling and observe excellent agreement of bo(y) =
Monte Carlo data and mean-field predictions. Our key result ©

is a set ofuniversal scaling exponentsxdependent of bias

and boundary conditions. For example, in all cases the nunsubject to the initial and boundary conditiogi(y,0)
ber of broken bonds increasesta€, before saturating at a =26(y)—1 and dy(*+L/2t)=0. First, we introduce the
value of O(LY). In contrast, the scalinfunctionsfor the  new variable
disorder parameter exhibit lesserdegree of universality:

While they remain independent of the bias in the case of o 1 1
periodic boundary conditions, an additional scaling variable, XEJ dy’ N Edo(y)’
LE, must be taken into account for reflecting boundary con- Y $o(y") °

ditions. This variable also controls the shape of the excesgich is strictly positive. This reduces EEA1) to a diffu-

density (magnetization profile. _ sion equation with a spatially varying diffusion coefficient
So far, we have restricted our attention to systems con-

taining only a single vacancy. However, in real systems, one Aup(X, )= EX 02h(x,t) (A3)
should expect that the number of vacancids,scales with

system size[7]. For generality, we introduce theacancy subject to the boundary conditiofi,y(x. ,t)=0 at x.
number exponeny, with O<y=d, so thatM~L". Thus, =[E¢,(*+L/2)] *. We note that the definitioA2) implies

y=d—1 describes a situation where the vacandide-  0<x,<x_. Next, we separate variables, according to the
fects”) prefer the interfacial region before the upquench oc-ansatz

curs. Our previous results correspond to the casé® but

are easily extended. We simply need to modify the normal- P(X,1)=T(t)f(x), (A4)
ization condition for the hole density profile, E), so that

the constant C, given in Eg. (11), becomes C  Whence we obtain two ordinary differential equations

=EL/[2LY9" ”sinhEL/2)]. As a consequence, the late cross-

—F F  exp E
2L9sinn(EL/2) HEY)

(A2)

over time, Eg. (20, now scales as t.(L,E) d—T+KT=O (A5)
=L9%2777(LE), so that z=d+2—y and o=(d+vy dt ’
—2)/2. Of course, these exponents are again universal.
We conclude by noting the different symmetries which d’f
characterize the BWBC and the PBC case, inptesencef @"' Ex 0 (AB)

the bias. Periodic boundary conditions are compatible with
translation invariance, but violate the detailed balance condiTh
tion: the driving force is not compensated by a chemica\N
potential gradient. In contrast, detailed balance holds for rer

geclilng lkio_undqtry Cond'EOBf' t?]u'{t :rr]anslatll_on mvanancte 'Sdecay. The second constitutes a well-defined Hermitian ei-
roken. 1t IS quite remarkablé that e scaling exponents re(jenvalue problem, with eigenvalugsand eigenfunctions

main unaffected by such profound differences in SYMmetry - ~onvenience. we define/E=a2/4 and transform Eq.

ACKNOWLEDGMENTS (A6) into the differential equation for thBessel functions
[13], via u=a+/x. The solutions are
We would like to thank S. Redner for asking a pertinent
guestion which led to this work. We are also grateful to R. K. T(t)=exp — «t), (A7)

e constantk must be positive in order to be consistent
ith the steady state solution, lim.. ¥(y,t)=,(y)=0.
he first of these equations describes a simple exponential
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f(x)=AaXJ (@X) + BaxNy(avx).  (A8)

Here,A andB are integration constants. We have two bound-
ary conditions, one at each end of the system. Using the
recursion relations for the Bessel functions, we can eliminaté"

one of the integration constants, e.g.,

Jo(anx2)
No(ax_)

B=—A (A9)

and specify the allowed eigenvalueg as the solutions of

the implicit equation

0=No( VX ) ol @nyX+) = No( @ny/x 1) Jo( @nyx-)

(A10)

ENO()\Zn)JO(Zn)_NO(Zn)JO()\Zn)- (All)

The second line, withz,=a,Vx. and A=X_/x,
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P, = 2, AdUn(X)expl — kql), (A16)

hereanEaﬁM, andx=[E¢,(y)] L. The expansion co-
efficientsA, are chosen such that the initial condition is sat-
isfied. Withx,=[E¢,(0)] 1, this yields

ac
An= [ No( o) Jo( 2 5) — No( X ) Jof ry o) ]
(A17)

[Pz Py e N

—No(Azp)Jo(VAZ)].

This completes the solution. Of course, it is given rather
implicitly in terms of the eigenvalues. To make our expres-

(A18)

=explLE/2)>1, is a more standard form of the eigenvaluesions more transparent, we track the key system parameters,
equation[13]. Since both], and N, oscillate, this equation L andE, through these manipulations, in order to exhibit the
has infinitely many solutions. The eigenvalues are real, nonscaling properties of the theory.

degenerate, and discrete; they increase monotonicallyrwith
The lowest ones are easily determined numerically for dif-
ferent\. For largens/(\ — 1), there is an asymptotic expan-

sion

_nmw 1 (7\—1)2 ()\—1)4)
Zn—m[l—ﬁ F +O( F } (A12)

APPENDIX B: SCALING ANALYSIS

1. Eigenvalues and expansion coefficients

We first establish the scaling properties of the eigenval-
ues, k,. Beginning with Eq.(A11l), we conclude that the
z,’s are functions of\ alone. Since\ =exp(LE/2), eachz,
depends only on the scaling paramdié&r. To obtain a simi-

To find the eigenfunction§U,(x)}, we need to normalize |5 conclusion fork, = Ea2/4=EZ/(4x. ), we recall that

the f’s. For convenience, we introduce the auxiliary function

F(S)=S[No(@nvx_)J1(8) = Jo( @nyXx _IN1(8)]

(A13
and define the normalization constants
(o)
C =
" IF2(anx0) — F2(apx1)]H2
= il (A14)
[F2(Nzy) —F2(z,) Y%
Then, the eigenfunctions take the form
Cn
Un(X)= —F(anyx)
dn
= Cp VX[ No( an VX )31 \/X)
— Jo( VXN (@nX)]. (A15)

They are real and orthonormal:

+L/2

Sam= L A X UL U p(X) = ELL/Z dy Un(y)Un(y),

(EL)?exp(EL/2)

1K, =Edo(+L/2)= .
+ZEdol )2Ld“sinl'(EL/2)

Thus, the desired scaling form for the eigenvalues is
Kn= Li(d+2)gn(LE)a (B1)
where the scaling functiog,(x), with x=LE, is given by

x3 exp(x/2)

2
gn(X)=Zn(X)m. (B2)

Its limits for small and large argument are easily found from
Eqg. (A1l) and the asymptotic fornA12):

lim gn(x)=(nm)?[1+0(x)]

x—0

and lim g,(xX)=x,exp(—x/2), (B3

X— 0

wherex,, denotes thath zero of the Bessel functiody,.
In particular, we are interested in thete crossover time
Eq. (20), defined as the inverse of the first eigenvalue

to(L,E)=x; '=L9"274(LE). (B4)

where the second equality expresses the orthonormality con-

dition in terms of the original variablg. They form a com-  This characteristic time is a measure for when the crossover
plete set so that the full solution for the magnetization denfrom the intermediate to the saturation regime occurs. The
sity can be written as an expansion behavior of its scaling functior’r,c(x)zgl’l(x), follows im-
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mediately from Eq.(B3): lim, o 7s(X)=7"[1+0(x)] form, Eqg. (A12). Since the latter holds provided/[\
and lim,_... 7¢(x)=(0.1729 - -/x3)exp(x). —1]>1, the critical n,~\N=exp(LE/2) increases rapidly

Finally, we will need the scaling behavior of the expan-Wwith LE. However, t_his presents no problem since only finite
sion coefficientsA,. From Eq.(A18), it is immediately ap- Vvalues ofLE are of interest to us.

parent that these coefficients depend only orctirabination In summary, to obtain the short-time behavior4f it is
LE so thatA,=A,(LE). sufficient to replace the eigenvalugs by their asymptotic
form everywhere Any errors generated in this way are at
2. The Poisson resummation of the disorder parameter: most linear int. In this manner, the dependence on the sum-
short-time behavior mation indexn becomes explicit, and we can apply the Pois-

. ) son resummation formuld5], which holds for any continu-

While Eq. (16) for A(L,E;t) is of course completely ex- o5 hounded functiofi(x), provided its Fourier transform
act within our mean-field theory, it converges rapidly only F(w)=2/dx f(x)cos@x) is well defined:
for late times,x,t>1. There, keeping only the=1 term in
the sum already results in an excellent approximation. In * 1(1 * 2m
contrast, Eq(16) is not very practical if we wish to extract Ef(OH E f(ng)= —[EF(OH E F(—)
the observed power law at early times. Fortunatel?oés- n=1 4 m=1 ¢
son resummatiol5] of Eq. (16) allows us to recast the (B7)
disorder parameter in a form that converges rapidly in thg gre s the parameter that controls the convergence of the
short-time limit. Some details of this procedure form theg, s in our case, we identify
content of this section.

We recall Eq.(16): \/ 472(IN\)3\2
(A—1)3(\+1)

" L~ (d+2), (B8)
d d 1 2
Ar(LE)= 5L 1- = > Alexp(—2knt) |,

n=1 The resummation is now straightforward and results in

(BS)
where bothA,, and ,, depend on the summation index via g g 401 a2
the eigenvalueg,. The key to the Poisson resummation Ar(L.ED) 2- 773/2\/{|m\§{1+o(exq ™I}

resides in the following three statements.
First, from the discussion below E¢L5), we recall the d , 8 _—
initial condition on the disorder parameter, namely, =5L \/—;\/ﬁ{1+0(exp(—q-r 1E)},
Ag(L,E;0)=0. This implies[14]
1 where thescale factorfor the short-time scaling is given by
2
EL ngl An=1, (B6) (LB d+2 4 sinh(LE/2)
, , , , (LEB)= LEexpLE2)" (B9)
so that there is no constant term in the short-time expansion
of Ag. While this characteristic scale obeys the same scaling form
Second, considering anfinite number of terms in EQ. as the late crossover timéB4),
(B5 can only generate alinear time dependence,
Ag(L,E;t)«t. Therefore, theanticipatedshort-time behav-
ior Ar> \t must be controlled by thiarge ncontributions to
the sum. Hence, these are crucial for our purposes.
Third, for sufficiently largen>n,, we can always ap- we note that the scaling functiony(x) is different from
proximate the eigenvalueg, by their explicit asymptotic  7(X).

X exp(x/2)

(LB =L r(LE) with r(0=7aem
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