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Universal aspects of vacancy-mediated disordering dynamics: The effect of external fields
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We investigate the disordering of an initially phase-segregated binary alloy, due to a highly mobile defect
which couples to an electric or gravitational field. Using both mean-field and Monte Carlo methods, we show
that the late stages of this process exhibit dynamic scaling, characterized by a set of exponents and scaling
functions. A new scaling variable emerges, associated with the field. While the scaling functions carry infor-
mation about the field and the boundary conditions, the exponents are universal. They can be computed
analytically, in excellent agreement with simulation results.

PACS number~s!: 05.40.2a, 66.30.Lw, 82.20.Mj
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I. INTRODUCTION

The kinetics of phase ordering in alloys, following a rap
temperature quench below the coexistence curve, has t
tionally attracted much interest, both in the physics and m
terial science communities@1#. Remarkably, the tempora
growth of ordered domains, as measured, e.g., via a ti
dependent structure factor, exhibits universal features, s
as characteristic growth exponents and dynamic scaling
analogy to critical phenomena. The ‘‘inverse’’ problem, i.
the bulk disordering of a system after a rapidincreasein
temperature or in response to highly mobile defects, is a
an interesting problem, occurring in the context of erosion
corrosion phenomena@2#. In addition, it is a testing ground
for a fundamental question of statistical physics, name
how a system approaches its final steady state, starting
an initial nonstationarycondition.

In most real solids, microscopic atom-atom exchanges
mediated by defects, such as vacancies or interstitial s
@3#. Thus, it is natural to describe such processes with
help of a three-state model, allowing for two species of
oms and a certain number of empty~defect! sites @4#. Va-
cancy concentrations are typically extremely small~of the
order of 1025). As a first step towards a deeper understa
ing of disordering dynamics, we will neglect any asymm
tries in the microscopics of the two atom species, leav
them for consideration at a later stage@5#. Thus, our study
will be based on an Ising model with a very small admixtu
of empty sites, namely, asingle vacancy, undergoing an
‘‘ up-quench’’ from zero to infinite temperature. Since we
wish to describe particles and holes, the dynamics will c
serve the number of each species separately. Only part
hole exchanges will be permitted, in order to model the
cancy mechanism. We should note for completeness th
number of investigations have focused ondown-quenchesin
similar models, i.e., vacancy-mediated domain growth@6#.

An alternate view of our study addresses the effect o
random walker on its background medium. Each step of
walker displaces part of the background, leaving tracks si
lar to a beachcomber in the sand. These tracks can be m
tored and display their own dynamics. In the simplest c
@7#, the walker is a Brownian vacancy, exploring a latti
PRE 611063-651X/2000/61~3!/2386~11!/$15.00
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filled with particles of two species, labeled as ‘‘black’’ an
‘‘white,’’ or ‘‘up’’ and ‘‘down’’ spins. Starting from a per-
fectly phase-segregated state, three distinct temporal reg
are observed, separated by two crossover times. During
late stages of this process, the number of broken bonds
hibits dynamic scaling, characterized by a set of expone
and a scaling function. A mean-field theory allows for t
analytic calculation of these features, in excellent agreem
with simulations@7#.

In order to test the range of universality of this model, w
extend these studies to the case of abiasedrandom walker:
The vacancy or defect hops preferentially along one of
lattice directions, as if subject to gravity. In the language
electrostatics, the defect is charged, disordering an in
configuration of neutral atoms in the presence of an elec
field. We emphasize that this iscompletely equivalentto hav-
ing a neutral~or less massive! vacancy in a background o
particles, all of which carry thesamecharge~or larger mass!.
As in the unbiased case, there is nofeedbackfrom the back-
ground to the defect, i.e., the motion of the vacancy is in
pendent of the local background configuration. However,
choice of boundary conditions along the direction of the fie
now becomes important: we will consider two cases, one
which spatial inhomogeneities persist in the long-time lim
and another which approaches a homogeneous steady
Intriguingly, in both cases the three temporal regimes no
before are still clearly observable. Our key goal is to explo
to what extent scaling functions and exponents areuniversal,
i.e., independent of boundary conditions and bias. Empl
ing exact results, a mean-field theory and Monte Carlo sim
lations, we find that the scalingexponentsare completely
universal, but that the scalingfunctionscan depend sensi
tively on the boundary conditions, through a new scali
variable which involves the bias.

The paper is organized as follows. In Sec. II, we defi
our model, discuss the associated boundary conditions
introduce control parameters and observables of interest.
then turn to our findings. In Sec. III, we set the scene
characterizing the final steady states which are exa
known. On the basis of Monte Carlo data, we then dem
strate the emergence of three temporal regimes and the s
ration of time scales between them. This observation for
2386 ©2000 The American Physical Society
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the basis of a mean-field theory, to be introduced in Sec
Its scaling predictions are compared to detailed Monte C
simulations in the following section. We conclude with som
comments and open questions.

II. MODEL

We begin by summarizing the discrete model underly
the Monte Carlo simulations. It is defined on a tw
dimensional~2D! square lattice of dimensionsL3L. Each
lattice site is denoted by a pair of integersr[(x,y), and can
be occupied by either a black particle, a white particle, o
vacancy. Multiple occupancy is forbidden. Thus the config
rations of the model can be described by a set of spin v
ables$s r% which can take three values:s r511 (21) for a
black ~white! particle, ands r50 for a vacancy. To mode
the minuteconcentrations of vacancies in real systems,
focus on the case of asinglehole. The number of black (N1)
and white (N2) particles is conserved and equal:N15N2

5N/2 @8#. In the conclusions, we return briefly to the que
tion of higher vacancy concentrations.

The initial configuration is perfectly phase segregat
Black and white particles each fill one half of the syste
with a sharp flat interface between them, chosen to lie h
zontally along thex axis. The vacancy is located at the i
terface. Even though this structure is that of a ferromagn
cally ordered state, the details of the particle-parti
interactions are not important, since we will be interested
upquenches to infinite temperatureT5`. Thus, the vacancy
moves independently of its local environment. However, i
subject to a biasE, alignedtransverseto the initial interface,
i.e., upwards along the~positive! y axis. This is of course
equivalent to the particles experiencing an external grav
tional or electric field pointing along2y. We stress that a
factor 1/T has been absorbed into the parameterE; i.e., we
are considering thehigh-temperature, high-field limitof a
more complex interacting system.

At each Monte Carlo time step~MCS!, one of the four
nearest neighbors of the vacancy is chosen at random.
exchange is performed using Metropolis@9# rates:
min$1,eEady%, modeling alocal electrostatic or gravitationa
potential. Here,dy50,61 is the change in they coordinate
of the vacancy, in units of the lattice constanta. Thus, moves
againstthe field are exponentially suppressed while all o
ers are accepted. No particle-particle exchanges are allo

Next, we specify the boundary conditions. In combinati
with the bias, they determine whether any spatial inhomo
neities survive in the long-time limit, with potential cons
quences for scaling exponents or functions. In the unbia
case, the stationary state is completely uniform@7#, and the
choice of boundary conditions affects at most nonunive
amplitudes. To test the effect of spatial inhomogeneities,
consider two scenarios, namely, reflecting@also referred to as
‘‘brick wall’’ ~BWBC!# or periodic~PBC! boundary condi-
tions for the top and bottom edges. The right and left bou
aries, being aligned with the drive, are not expected to pla
significant role; we choose them to be periodic in both cas
These two scenarios differ in two important respects. Fi
reflecting boundary conditions allow some spatial inhomo
neities to persist, while periodic boundary conditions lead
homogeneous distributions. Second, we will see in the n
.
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section that, under BWBC, the system approaches anequi-
librium state in which all transport currents have subsided
contrast, periodic boundary conditions are incompatible w
a global Hamiltonian, so that the steady state is anonequi-
librium one, carrying a net mass current.

The two control parameters for the Monte Carlo simu
tions will be the field strengthE and the system sizeL. To
monitor the evolution of the system, we measure a ‘‘disor
parameter,’’ namely, the number of broken bonds~i.e.,
black-white nearest-neighbor pairs!, A(L,E;t) @7#, as a func-
tion of time t. More detailed information is carried by th
local hole and magnetization densities, defined, respectiv
as

f~r ,t ![^dsr ,0
&, c~r ,t ![^s r&. ~1!

Here, ^•& denotes the configurational average. T
Kronecker-d ensures that lattice siter is the one occupied by
the vacancy. Nonzero values ofc(r ,t) indicate anexcessof
white or black particles at lattice siter , which is also a sen-
sitive measure of the disordering process. The full time
pendence of these densities can in general only be comp
within a mean-field approach. However, their stationa
forms are easily found from the known steady-state distri
tions, as we will presently see.

We finally note that, for the analytic part of our work, it
straightforward to generalize our model tod dimensions: De-
noting a lattice site byr[(x1 , . . . ,xd21 ,xd[y), the field
selects aone-dimensionalsubspace, with reflecting or per
odic boundary conditions, along they direction. The (d
21)-dimensional transverse subspace retains perio
boundaries.

III. EXACT RESULTS: THE STEADY STATES

An exact solution of our model involves knowledge of th
full time-dependent distributions,P($s r%,t), for the prob-
ability of finding configuration$s r% at time t. This requires
finding all eigenvalues and eigenvectors of the underly
master equation

] tP~$s r%,t !5 (
$sr8%

$W@$s r8%u$s r%#P~$s r8%,t !

2W@$s r%u$s r8%#P~$s r%,t !%. ~2!

Here, W@$s r%u$s r8%# denotes the transition rate, per un
time, from configuration$s r% into a new configuration$s r8%
which may differ only by one vacancy hop. In discrete tim
it is just the Metropolis rate specified above. Even thou
Eq. ~2! is only linear in the probabilities, a complete solutio
is usually feasible only for systems which are either ve
small (L&3) or restricted to one dimension. Both cases
only of limited interest here. However, it is often possible
determine a particular eigenvector, namely, the one ass
ated with the~nondegenerate! eigenvalue zero: this provide
us with thestationary limits, Po($s r%)[ limt→`P($s r%,t),
of the full distributions.

This procedure is particularly simple for the case of bri
wall ~reflecting! boundary conditions. Here, we can immed
ately write down the internal energy~the ‘‘Hamiltonian’’! of
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2388 PRE 61TRIAMPO, ASPELMEIER, AND SCHMITTMANN
the system, being the electrostatic energy of a sin
charge in a uniform electric field. Thus,Po($s r%)
}exp@(rEaydsr ,0

# is just the associated equilibrium Boltz
mann factor. Since interparticle interactions are restricted
the excluded volume constraint,Po is ‘‘color blind,’’ i.e., it
gives equal weight to all configurations ofparticlesat fixed
vacancy position. Of course, any additional interactio
could easily be incorporated into the Hamiltonian.

In contrast, the toroidal geometry of periodic bounda
conditions, in combination with a uniform drive, prevents t
existence of a global,time-independentpotential. Therefore,
the steady state is far from equilibrium. Yet fortunately, t
stationary distribution is still exactly known@10# and even
simpler:Po is completelyuniform, giving equal weight toall
configurations of vacancyand particles. In this case, how
ever, it is entirely unknown how to generalize this solution
more complex interparticle interactions.

Given the stationary distributions, the steady-st
densities, defined via fo(r …[ limt→`f(r ,t) and co(r …
[ limt→`c(r ,t), are easily computed. For reflecting boun
ary conditions,fo is spatiallyinhomogeneous, following the
usual exponential profile. Since the steady state is c
blind, the magnetization density is uniform. For simplicit
we place the coordinate origin into the center of the syst
Thus,

fo~r …5C exp~Eay! and co~r !50, ~3!

where the normalizationC5sinh(Ea/2)/$Ld21 sinh@Ea(L
11)/2#% ensures that the system contains only one vaca
The second equation just reflects the fact that there are e
numbers of positive and negative particles@8#. It is notewor-
thy, and may not be entirely trivial at first sight, that th
inhomogeneities inf leave no trace at all in the magnetiz
tion distribution.

The corresponding results for periodic boundary con
tions are even simpler:

fo(r )5
1

Ld
and co~r !50. ~4!

Here,fo(r … is also uniform, reflecting a single vacancy in
system ofLd sites.

Finally, the saturation value for the number of brok
bonds is readily found, since the particle configurations
the steady state are completely random. Since each o
four types of particle-particle bonds is equally likely, to lea
ing order in 1/L, we obtain

Asat~L,E![ lim
t→`

A~L,E;t !5
d

2
Ld@11O~L21!#.

The corrections include surface terms which distinguish
boundary conditions: for BWBC, we findO(L21)5
22d11/(dL) while the leading correction for PBC is onl
1/Ld. The vacancy plays an even smaller role since it affe
only 2d bonds: this contribution is neglected here. Havi
established the key features of the steady state, we now
to simulation results.
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IV. SEPARATION OF TIME SCALES

Our aim in this section is to motivate the key ingredie
which will be required for most of our mean-field result
namely, that the vacancy equilibrates on a much faster t
scale than the particles. Since this observation will be ba
on Monte Carlo data, we first summarize the parameter
our numerical work.

We have performed detailed simulations of our mod
using two-dimensional square lattices withL ranging from
20 to 60. The lattice constanta is set to 1. Both types of
boundary conditions, reflecting and periodic, have be
implemented. For reflecting boundary conditions, the ex
nal field varies between 0 and 1.0. Larger values ofE or L
equilibrate too slowly for our computational resources. F
periodic boundary conditions, equilibration takes place mu
faster, and therefore,E varies between 0 and 10.0. Our da
are averaged over 1022105 realizations, depending on th
desired accuracy. The length of the runs varies with sys
size, up to a maximum of 108 MCS.

To obtain a visual impression of the disordering proce
Fig. 1 shows the evolution of a typical configuration, in
40340 lattice withE50.05 and brickwall boundary condi
tions. The initial interface, completely smooth att50, be-
gins to break up as increasing numbers of particles are tr
ported into the oppositely colored half of the syste
Eventually, the system becomes completely disorde
Clearly, the number of broken bonds,A(L,E;t), is a suitable
quantitative measure for the growing disorder, shown in F
2 for the same set of system parameters.

Similar to the unbiased case@7#, it clearly exhibits three
regimes, drawn schematically in the inset: an early regi
~I!, an intermediate regime~II !, and a late or saturation re
gime ~III ! in which the system has reached steady state.

FIG. 1. Sequence of snapshots showing the disordering pro
of 40340 system withE50.05 and BWBC. The black and gra
squares represent the two types of particles (s561) and the white
square denotes the vacancy (s50). The configurations were re
corded after 0, 103, 104, 105, 106, and 107 MCS.
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the system size increases, the intermediate regime spa
widening time range, suggesting that the three regimes
temporally well separated. In practice, this is already the c
for L*20. This separation of time scales is also observed
larger values of the bias. Physically, the three regimes
characterized as follows. For early times~regime I!, the va-
cancy is still localized in the vicinity of its starting poin
Given the properties of random walks, this regime is e
pected to depend strongly on the dimensionality. After a ti
of O(L2), however, the vacancy has explored the whole s
tem and is effectively equilibrated. This marks the onset
the intermediate regime. In contrast, the particle distribut
is still strongly inhomogeneous, equilibrating only upon e
tering the saturation regime. A completely analogous pict
emerges for periodic boundary conditions.

Our goal in the following is to test for dynamic scalin
Since our data involve the three variablesL, E, andt, as well
as two types of boundary conditions, the appropriate sca
forms may not bea priori obvious. We shall therefore firs
consider an analytic approach, before turning to a deta
comparison with the data.

V. MEAN-FIELD THEORY

A. The equations of motion

Since an exact solution of the full master equation is
available, we seek a simpler formulation of the dynami
For our purposes, a set of equations of motion for the t
conserved densities,f and c, provides a suitable startin
point. We immediately focus on thed-dimensional case. A
spatially discreteversion of the desired equations is eas
obtained from the master equation, via the definition~1!. Not
surprisingly, the excluded volume interaction mixes corre
tion functions of different orders, generating the usu
BBGKY hierarchy. To obtain a closed set of equations
mean-fieldapproximation is required: higher correlations a
approximated by products of appropriate single-point av
ages. Finally, we take the continuum limit, by letting th
lattice constanta vanish at fixedphysicalsystem sizeL and
field E. The microscopic time scale is identified witha2/2d.
Thus, the resulting densities are functions of acontinuous
d-dimensional coordinater[(x1 , . . . ,xd21 ,xd[y) and time
t. The spatial origin is chosen at the center of the system

FIG. 2. Plot ofA(L,E;t) vs t, for L540, E50.05, and BWBC.
The inset shows the emergence of an early regime~I!, an interme-
diate, or scaling, regime~II !, and a late or saturation regime~III !.
See text for additional details.
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that 2L/2<xi<L/2 for i 51,2, . . . ,d. Letting ŷ denote the
unit vector along the direction ofE, we finally obtain the
basic equations of motion

] tf~r ,t !5“@“f~r ,t !2Eŷf~r ,t !# , ~5!

] tc~r ,t !5“@f~r ,t !“c~r ,t !2c~r ,t !“f~r ,t !

1Eŷf~r ,t !c~r ,t !# . ~6!

Here,“ is the d-dimensional gradient. Clearly, both equ
tions take the form of continuity equations, reflecting t
conservation laws. The right-hand sides are the~negative!
gradients of the associated hole and magnetization curre
In the field-free limitE50, these are just the results of Re
@7#. Of course, the bias induces additional terms which
flect systematic Ohmic currents: Since particles can o
move when the vacancy is present, the extramagnetization

current2Eŷfc is proportional tof. In contrast, thehole

currentEŷf is independent of the local particle backgroun
as one should have expected. We also note here thatE has
dimensions of inverse length. This suggests that thedimen-
sionlesscombinationLE will emerge as a convenient scalin
variable.

Equations~5! and ~6! have to be supplemented with th
constraints on the total hole and particle@8# numbers

E
V
f~r ,t !51 and E

V
c~r ,t !50. ~7!

Here,V5Ld is the volume of the system. Next, we consid
the boundary conditions. In the PBC case, the solutions
Eqs. ~5! and ~6! must be fully periodic functions ofr , with
periodL. For reflecting boundary conditions, the periodici
of the solutions is restricted to the transverse subsp
Along E, we demand instead that the hole and magnetiza
currentsvanish on the boundaryy56L/2.

Finally, we specify the initial conditions. The vacanc
starts at the origin

f~r ,0!5d~r ! ~8!

and the particles are perfectly phase separated:

c~r ,0!52u~y!21. ~9!

This completes the discussion of the equations of motion
their constraints. We now focus on their solution.

B. Solutions

As a starting point, we first establish the steady-state
lutions of Eqs.~5! and ~6!. When turning to the full time
dependence, progress is only possible if we simplify
equations of motion by invoking the separation of tim
scales. We shall mostly focus onbrick wall boundary condi-
tions, since this situation is physically more complex, as
shall shortly see. At the end, we briefly summarize our
sults for the fully periodic case.

Anticipating inhomogeneities along they direction only,
due to the bias, we seeksteady-statesolutions of the form
f(r ,t)5fo(y) andc(r ,t)5co(y). Equation~5! can now be
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2390 PRE 61TRIAMPO, ASPELMEIER, AND SCHMITTMANN
integrated once, and the reflecting boundary conditions fo
the integration constant, i.e., the hole current, to zero.
can immediately integrate again, whence

fo~y!5C exp~Ey!. ~10!

The constantC follows from the normalization condition~7!:

C5
EL

2Ld sinh~EL/2!
. ~11!

Not surprisingly, this expression is just the continuum lim
of the exact result, Eq.~3!. One should note the emergence
the conjectured scaling variableLE. In Fig. 3, we compare
the mean-field profiles forL520 and a range ofE’s with the
corresponding Monte Carlo data. The agreement is cle
excellent. Finally, a similar integration of Eq.~6!, using Eq.
~10!, yieldsco(y)50, also consistent with the exact form

Unfortunately, the solution of the time-dependent eq
tions is not so simple. The full solutionf(r ,t) of Eq. ~5!
must be found and inserted into Eq.~6!. The latter poses a
formidable problem: even though it is a linear, second or
partial differential equation of parabolic type, its coefficien
are rather complicated functions of space and time. Fo
nately, a complete solution is possible if we restrict our
tention to theintermediate and lateregimes. Here, the va
cancy density has already reached steady state, so that
the purely exponentialfo(y) enters into Eq.~6!. Of course,
the reduced equation should be supplemented with the in
condition ~9!. Symmetry considerations as well as the d
suggest that the magnetization density is uniform transv
to E, so that we seek a solution of the formc(r ,t)
5c(y,t). Letting ] denote the partial derivative with respe
to y, we arrive at a much simpler version of Eq.~6!, describ-
ing the magnetization density at intermediate and late tim

] tc~y,t !5]@fo~y!]c~y,t !#. ~12!

It is subject to the initial condition~9! and the brick wall
boundary condition

]cS 6
L

2
,t D50 ~13!

FIG. 3. Simulation data for the steady state hole profile withL
520 andE50.01(1), 0.05(3), 0.10(* ), and 0.15(h), BWBC.
The dashed lines denote the mean-field profiles, Eqs.~10! and~11!,
at the same parameter values.
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which ensures that the magnetization current through
ends of the system vanishes.

This differential equation can be reduced to an eigenva
problem with a complete and orthonormal set of eigenfu
tions $Un(y)% which are linear combinations of Bessel fun
tions. The eigenvalueskn are real, discrete, and strictly pos
tive. Deferring all mathematical details to the Appendix, w
only quote the form of the solution, expressed as an eig
function expansion:

c~y,t !5 (
n51

`

AnUn~y!exp~2knt !. ~14!

The expansion coefficientsAn are chosen so as to match th
initial condition ~9!.

Combined with the explicit expressions for its constit
ents~see the appendices!, Eq. ~14! is exact within our mean-
field approach. It agrees remarkably well with Monte Ca
data, as demonstrated by Fig. 4. There, we compare the
of the first 1000 terms in Eq.~14!, for several values oft,
with simulation results. A single fit parameter is require
which convertst into the number of MCS. One sees clear
how the initially phase-segregated system disorders w
time.

Having established the structure of the densities, we t
to the disorder parameter. Being the number of brok
bonds, it is directly related to the~nearest-neighbor! Ising
‘‘energy’’ of our model ^2(^r ,r8&s rs r8&. Since the con-
tinuum limit of the latter is proportional to*Vc2 @11#, we
obtain @7#

A~L,E;t !5
d

2
LdF12

1

L E
2L/2

1L/2

dy c2~y,t !G1O~Ld21!.

~15!

We emphasize that the boundary conditions only affect s
face terms. These will be neglected in the following, lead
only to small errors sinceL>20 in the data. To the sam
accuracy, the initial condition forA is just A(L,E;0) 50.
Using Eq.~14! and carrying out the integral, we find the tim
evolution of the disorder parameter, forbrick wall boundary
conditions

FIG. 4. Simulation data for magnetization density profile w
L520, E50.1, and BWBC after 104(1), 53104(3), 105(* ),
33105(h), 53105(j), 73105(s), and 106(d) MCS. The
dashed lines show the corresponding mean-field profiles base
Eq. ~14!. See text for details.
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AR~L,E;t !5
d

2
LdF12

1

EL (
n51

`

An
2 exp~22knt !G . ~16!

Here, we have introduced a subscriptR ~reflecting! or P ~pe-
riodic! to distinguish the two types of boundary condition

We conclude by focusing briefly on the case offully pe-
riodic boundary conditions. The steady-state solutions
Eqs. ~5! and ~6!, consistent with the constraints~7!, are
fo(r …51/Ld and co(r …50. To obtain the time-dependen
excess densityc(r ,t…, we invoke the separation of tim
scales again. Noting that the vacancy density has equilibr
at the beginning of the intermediate regime, we insert
steady-state formfo into Eq. ~6!, whence

] tc~r ,t !5“@fo~“1Eŷ!c~r ,t !#.

This simplified form holds in the intermediate and late
gimes. A Galilei transformationr[r 81Efoŷt recasts it as
an ordinary diffusion equation, with diffusion coefficien
fo :

] tc~r 8,t !5fo¹2c~r 8,t !. ~17!

Quite remarkably, we observe that all effects of the fie
disappear in a suitably chosencomovingframe. Thus, the
solution of Eq.~17! and the accompanying disorder para
eter can be read off immediately@12# from Ref. @7#. In the
original frame, the whole profilec(r ,t) drifts with velocity
2EL2dŷ. Of course, no such drift is observed inAP(L,E;t),
by virtue of the spatial integration in Eq.~15!:

AP~L,E;t !5
d

2
LdF12

8

p2 (
n51,3, . . .

`
exp~22knt !

n2 G ,

~18!

wherekn[(2pn)2/Ld12.
This completes the discussion of our mean-field equati

and their solutions. We now turn to the underlying scali
behavior and compare it to Monte Carlo data.

VI. DYNAMIC SCALING: ANALYTIC PREDICTIONS
AND NUMERICAL TESTS

In this section, we extract the scaling forms for the nu
ber of broken bondsA(L,E;t). We begin with Eq.~16! for
brick wall boundary conditions. In the appendices, it
shown that both the coefficientsAn and the eigenvalueskn
exhibit characteristic scaling forms:An is a function of the
new scaling variableLE alone, while the eigenvalues obe

kn5L2(d12)gn~LE!.

Therefore, the scaling form ofAR(L,E;t) is apparent,
namely,

AR~L,E;t !5LdFR~LE,t/tc!, ~19!

whereFR is an appropriate scaling function. The tempo
scale factortc is itself still a function ofLE and can be
chosen in different ways. Here, we focus on the crosso
from the intermediate to the saturation regime and defintc
as a measure for the late crossover time
f

ed
s

-

-

s

-

l

er

tc~L,E![k1
215Ld12tc~LE!. ~20!

The limits of the scaling functiontc[g1
21 are discussed in

the appendices: It approaches its field-free limit forvanish-
ing LE and increases exponentially withLE in the opposite
limit, reflecting the increasing confinement of the vacan
We already note one of our key results here, namely,
emergence of anewscaling variableLE. Its physical origin
is clear: it determines how easily the vacancy can esc
from the top (y5L/2) edge of the system, where the fie
tends to localize it, in order to travel to the center of t
system where most of the disordering is taking place.

It is interesting to contrast the behavior of the disord
parameter, and hence the scaling functionFR for ‘‘late’’ and
‘‘early’’ times, t/tc@1 and t/tc!1 ~but already within the
intermediate regime!, respectively. For late times, the diso
der parameter has saturated so that limy→` FR(x,y)5d/2 in-
dependent ofx[LE. The short-time limit requires some car
since Eq.~16! does not converge well there. However, usi
a Poisson resummation~see the appendices for details!, we
can recast it in an alternate form that converges rapidly
small z}t/tc :

AR~L,E;t !.
d

2
Ld

8

Ap
At/ts$11O„exp~2p2/z2!…%.

~21!

Thus, we conclude that the disorder parameter increases
power law,tb, for short times, with an exponentb51/2. The
short-timescale factor exhibits a similar scaling form as t
late crossover time

ts~L,E!5Ld12ts~LE!. ~22!

However, we emphasize that its scaling functionts differs
from tc in its dependence onLE. This feature finds its origin
in the short-time limit of the scaling function
limy→0 FR(x,y)5GR(x)y1/2, expressed by Eq.~21!: The
presence of the second argument,x5LE, leads to the non-
trivial prefactorGR(x) which translates between the two sca
ing functionsts andtc .

Before turning to a comparison with the data, we fi
contrast Eqs.~19!–~22! with the corresponding results fo
periodic boundary conditions

AP~L,E;t !5LdFP~ tL2(d12)![LdFP~ t/tc!. ~23!

All dependence onE disappearshere: The scaling function
FP can be found in Ref.@7#, and the late crossover timetc is
just Ld12. A Poisson resummation yields the short-time b
havior AP}(d/2)LdAt/tc$11O„exp(2p2/z2)…%, for z}t/tc
!1. Thus, we also find a power law increase here,AP}tb,
with thesameexponentb51/2. These predictions are teste
in Figs. 5 and 6, for periodic and reflecting boundary con
tions, respectively.

In Fig. 5~a!, we show the disorder parameterAP , for one
system size butseveralvalues ofE. Some slight deviations
are observable at short times, before the vacancy den
equilibrates. In the intermediate and late regimes, howeve
is quite striking, but entirely consistent with our expect
tions, that all data points fall onto the same curve, witho
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FIG. 5. Plot of the total number of broken bonds with PBC.~a! Plot of A(L,E;t) vs t of 40340 with E50.00(1), 0.10(3), 1.00(* ),
and 10.0(h). ~b! Scaling plot ofA(L,E;t)/L2 vs t/L4 for L530260 with E50.00, 1.00, and 10.0.
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any scaling being required. In Fig. 5~b!, we show a scaling
plot for several L and E. Excellent data collapse is observe
in the intermediate and late regimes, where our scaling
dictions are expected to hold. Again, we emphasize that
scaled axes depend only onL, but not onE.

Figure 6~a! shows the disorder parameterAR for reflect-
ing boundary conditions. Several values ofE are plotted, for
L540. As anticipated, the mixing process proceeds m
slowly for larger values ofE, since these tend to confine th
vacancy more strongly to the upper edge (y51L/2) of the
system. The corresponding scaling plot is shown in Fig. 6~b!:
Here, several values ofL and E are chosen such thatLE
52.0 remainsconstant. The data collapse in the intermedia
and late regimes lends full support to our prediction, E
~19!.

Focusing on the intermediate regime@O(L2)<t!tc#,
Figs. 5~b! and 6~b! show very clearly that the disorder pa
rameter increases as apower lawthere,A(L,E;t)}tb. Since
this behavior persists over at least three decades, we
extract a reliable numerical estimate for the exponent, res
ing in b50.560.01 for both reflecting and for periodi
boundary conditions, in agreement with our prediction.

Our results so far can be summarized more succinc
Defining a set of characteristic exponents and scaling fu
tions, the scaling of the disorder parameter, for both type
boundary conditions, can be written as

A~L,E;t !;LaF~LE,t/tc! with tc~L,E!;Lzt~LE!.
~24!
e-
e

e

.

an
lt-

y.
c-
of

Remarkably, we find that theexponentsa andz areuniver-
sal, i.e., independent of boundary conditions and drive. O
results,a5d which is exact andz5d12 which follows
from our mean-field theory, are completely consistent w
the Monte Carlo data and agree with the corresponding
ponents for the unbiased case@7#. The short-time behavior
can be written as

A~L,E;t !;Ls~ t/ts!
b, ~25!

with a ‘‘growth’’ exponentb51/2 which is also manifestly
universal. The additional exponents is related to the others
via the consistency conditionA(L,E;tc);A(L,E;t→`),
whences5d2zb5(d22)/2. This scaling law is obviously
satisfied by our results.

In contrast to the exponents, the scalingfunctionsF andt
are profoundly affected by the bias and the boundary con
tions. For PBC, we just recover the results of the unbia
case, whereas a nontrivial dependence on a new scaling
able,LE, emerges in the brick wall case.

VII. CONCLUSIONS

In this paper we have analyzed the vacancy-mediated
ordering of a binary alloy, in response to an upquench fr
zero to infinite temperature. The system is placed in a gra
tational or electric field, and two types of boundary con
tions, reflecting~‘‘brick wall’’ ! and periodic, are studied
Starting from a perfectly phase-segregated initial configu
tion, the vacancy mediates atom exchanges, leading to f
FIG. 6. Plot of the total number of broken bonds with BWBC.~a! Plot of A(L,E;t) vs t of 40340 with E50.00(1), 0.10(3), 0.20(* ),
0.30(h), and 0.50(j). ~b! The scaling plot ofA(L,E;t)/L2 vs t/L4 for L530(1), 40(3), 50(* ), and 60(h) with LE52.0.
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disorderedexactly knownfinal states. For brickwall bound
ary conditions, the final state is anequilibrium one, charac-
terized by a Boltzmann distribution and an exponential h
density profile. In contrast, the steady state established
periodic boundary conditions is anonequilibriumone, with
homogeneous configurational distribution and profiles. Us
Monte Carlo simulations, we monitor the time evolution
the system by measuring local profiles and a disorder par
eter, i.e., the number of broken bonds. For both types
boundary conditions, three temporal regimes are identifi
an early one, where the vacancy has not reached the bo
aries of the system, an intermediate one in which the vaca
has already equilibrated, but the particle distributions are
inhomogeneous, and a late regime where the system
reached steady state. To predict scaling exponents and
ing functions, we develop a theoretical description in ter
of a set of mean-field equations of motion for the local de
sities. Invoking the separation of time scales, the mean-fi
equations can be solved exactly in the intermediate and
time regimes, providing us with explicit expressions for t
observables of interest. We find that the disorder param
exhibits dynamic scaling and observe excellent agreemen
Monte Carlo data and mean-field predictions. Our key re
is a set ofuniversal scaling exponents, independent of bias
and boundary conditions. For example, in all cases the n
ber of broken bonds increases ast1/2, before saturating at a
value of O(Ld). In contrast, the scalingfunctions for the
disorder parameter exhibit alesserdegree of universality:
While they remain independent of the bias in the case
periodic boundary conditions, an additional scaling variab
LE, must be taken into account for reflecting boundary c
ditions. This variable also controls the shape of the exc
density~magnetization! profile.

So far, we have restricted our attention to systems c
taining only a single vacancy. However, in real systems,
should expect that the number of vacancies,M, scales with
system size@7#. For generality, we introduce thevacancy
number exponentg, with 0<g<d, so thatM;Lg. Thus,
g5d21 describes a situation where the vacancies~‘‘de-
fects’’! prefer the interfacial region before the upquench
curs. Our previous results correspond to the caseg50 but
are easily extended. We simply need to modify the norm
ization condition for the hole density profile, Eq.~7!, so that
the constant C, given in Eq. ~11!, becomes C
5EL/@2Ld2g sinh(EL/2)#. As a consequence, the late cros
over time, Eq. ~20!, now scales as tc(L,E)
5Ld122gtc(LE), so that z5d122g and s5(d1g
22)/2. Of course, these exponents are again universal.

We conclude by noting the different symmetries whi
characterize the BWBC and the PBC case, in thepresenceof
the bias. Periodic boundary conditions are compatible w
translation invariance, but violate the detailed balance co
tion: the driving force is not compensated by a chemi
potential gradient. In contrast, detailed balance holds for
flecting boundary conditions, but translation invariance
broken. It is quite remarkable that the scaling exponents
main unaffected by such profound differences in symme
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APPENDIX A: FULL SOLUTION
FOR THE MAGNETIZATION DENSITY

In this appendix, we present the mathematical details
solving Eq.~12! for brickwall boundary conditions, restricte
to the intermediate and late stages of the disordering proc
i.e., O(L2)!t. Thus, in the following, ‘‘early’’ refers to
times at the onset of the intermediate regime while ‘‘lat
times are deeply within the saturation region. To recall,
seek a solution,c(y,t), to the partial differential equation

] tc~y,t !5]@fo~y!]c~y,t !#, ~A1!

where

fo~y!5
EL

2Ld sinh~EL/2!
exp~Ey!

subject to the initial and boundary conditionc(y,0)
52u(y)21 and ]c(6L/2,t)50. First, we introduce the
new variable

x[E
y

`

dy8
1

fo~y8!
5

1

Efo~y!
, ~A2!

which is strictly positive. This reduces Eq.~A1! to a diffu-
sion equation with a spatially varying diffusion coefficient

] tc~x,t !5Ex ]x
2c~x,t ! ~A3!

subject to the boundary condition]xc(x6 ,t)50 at x6

[@Efo(6L/2)#21. We note that the definition~A2! implies
0,x1,x2 . Next, we separate variables, according to t
ansatz

c~x,t !5T~ t ! f ~x!, ~A4!

whence we obtain two ordinary differential equations

dT

dt
1kT50, ~A5!

d2f

dx2
1

k

Ex
f 50. ~A6!

The constantk must be positive in order to be consiste
with the steady state solution, limt→` c(y,t)5co(y)50.
The first of these equations describes a simple expone
decay. The second constitutes a well-defined Hermitian
genvalue problem, with eigenvaluesk and eigenfunctionsf.
For convenience, we definek/E[a2/4 and transform Eq.
~A6! into the differential equation for theBessel functions
@13#, via u[aAx. The solutions are

T~ t !5exp~2kt !, ~A7!
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f ~x!5AaAxJ1~aAx!1BaAxN1~aAx!. ~A8!

Here,A andB are integration constants. We have two boun
ary conditions, one at each end of the system. Using
recursion relations for the Bessel functions, we can elimin
one of the integration constants, e.g.,

B52A
J0~aAx2!

N0~aAx2!
~A9!

and specify the allowed eigenvaluesan as the solutions of
the implicit equation

05N0~anAx2!J0~anAx1!2N0~anAx1!J0~anAx2!
~A10!

[N0~lzn!J0~zn!2N0~zn!J0~lzn!. ~A11!

The second line, with zn[anAx1 and l[Ax2 /x1

5exp(LE/2).1, is a more standard form of the eigenval
equation@13#. Since bothJ0 andN0 oscillate, this equation
has infinitely many solutions. The eigenvalues are real, n
degenerate, and discrete; they increase monotonically win.
The lowest ones are easily determined numerically for
ferentl. For largenp/(l21), there is an asymptotic expan
sion

zn5
np

l21 H 12
1

8l S l21

np D 2

1OS S l21

np D 4D J . ~A12!

To find the eigenfunctions$Un(x)%, we need to normalize
the f ’s. For convenience, we introduce the auxiliary functi

F~s![s@N0~anAx2!J1~s!2J0~anAx2!N1~s!#
~A13!

and define the normalization constants

cn[
an

@F2~anAx2!2F2~anAx1!#1/2

5
an

@F2~lzn!2F2~zn!#1/2
. ~A14!

Then, the eigenfunctions take the form

Un~x!5
cn

an
F~anAx!

5cnAx@N0~anAx2!J1~anAx!

2J0~anAx2!N1~anAx!#. ~A15!

They are real and orthonormal:

dnm5E
x1

x2

dx x21Un~x!Um~x!5EE
2L/2

1L/2

dy Un~y!Um~y!,

where the second equality expresses the orthonormality
dition in terms of the original variabley. They form a com-
plete set so that the full solution for the magnetization d
sity can be written as an expansion
-
e

te

n-

-

n-

-

c~x,t !5 (
n51

`

AnUn~x!exp~2knt !, ~A16!

wherekn5Ean
2/4, andx5@Efo(y)#21. The expansion co-

efficientsAn are chosen such that the initial condition is s
isfied. Withxo[@Efo(0)#21, this yields

An5
4cn

an
@N0~anAxo!J0~anAx2!2N0~anAx2!J0~anAxo!#

~A17!

5
4

@F2~lzn!2F2~zn!#1/2
@N0~Alzn!J0~lzn!

2N0~lzn!J0~Alzn!#. ~A18!

This completes the solution. Of course, it is given rath
implicitly in terms of the eigenvalues. To make our expre
sions more transparent, we track the key system parame
L andE, through these manipulations, in order to exhibit t
scaling properties of the theory.

APPENDIX B: SCALING ANALYSIS

1. Eigenvalues and expansion coefficients

We first establish the scaling properties of the eigenv
ues, kn . Beginning with Eq.~A11!, we conclude that the
zn’s are functions ofl alone. Sincel5exp(LE/2), eachzn
depends only on the scaling parameterLE. To obtain a simi-
lar conclusion forkn5Ean

2/45Ezn
2/(4x1), we recall that

1/x15Efo~1L/2!5
~EL!2 exp~EL/2!

2Ld11 sinh~EL/2!
.

Thus, the desired scaling form for the eigenvalues is

kn5L2(d12)gn~LE!, ~B1!

where the scaling functiongn(x), with x[LE, is given by

gn~x![zn
2~x!

x3 exp~x/2!

8 sinh~x/2!
. ~B2!

Its limits for small and large argument are easily found fro
Eq. ~A11! and the asymptotic form~A12!:

lim
x→0

gn~x!5~np!2@11O~x!#

and lim
x→`

gn~x!.xn exp~2x/2!, ~B3!

wherexn denotes thenth zero of the Bessel functionJ0.
In particular, we are interested in thelate crossover time,

Eq. ~20!, defined as the inverse of the first eigenvalue

tc~L,E![k1
21[Ld12tc~LE!. ~B4!

This characteristic time is a measure for when the crosso
from the intermediate to the saturation regime occurs. T
behavior of its scaling function,tc(x)[g1

21(x), follows im-
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mediately from Eq. ~B3!: limx→0 tc(x)5p22@11O(x)#
and limx→` tc(x).(0.1729•••/x3)exp(x).

Finally, we will need the scaling behavior of the expa
sion coefficientsAn . From Eq.~A18!, it is immediately ap-
parent that these coefficients depend only on thecombination
LE so thatAn5An(LE).

2. The Poisson resummation of the disorder parameter:
short-time behavior

While Eq. ~16! for A(L,E;t) is of course completely ex
act within our mean-field theory, it converges rapidly on
for late times,knt@1. There, keeping only then51 term in
the sum already results in an excellent approximation.
contrast, Eq.~16! is not very practical if we wish to extrac
the observed power law at early times. Fortunately, aPois-
son resummation@15# of Eq. ~16! allows us to recast the
disorder parameter in a form that converges rapidly in
short-time limit. Some details of this procedure form t
content of this section.

We recall Eq.~16!:

AR~L,E;t !5
d

2
LdF12

1

EL (
n51

`

An
2 exp~22knt !G ,

~B5!

where bothAn and kn depend on the summation index v
the eigenvalueszn . The key to the Poisson resummatio
resides in the following three statements.

First, from the discussion below Eq.~15!, we recall the
initial condition on the disorder parameter, name
AR(L,E;0)50. This implies@14#

1

EL (
n51

`

An
251, ~B6!

so that there is no constant term in the short-time expan
of AR .

Second, considering anyfinite number of terms in Eq.
~B5! can only generate alinear time dependence
AR(L,E;t)}t. Therefore, theanticipatedshort-time behav-
ior AR}At must be controlled by thelarge ncontributions to
the sum. Hence, these are crucial for our purposes.

Third, for sufficiently largen.no , we can always ap-
proximate the eigenvalueszn by their explicit asymptotic
.

. E
-

n

e

,

n

form, Eq. ~A12!. Since the latter holds providednp/@l
21#@1, the critical no;l[exp(LE/2) increases rapidly
with LE. However, this presents no problem since only fin
values ofLE are of interest to us.

In summary, to obtain the short-time behavior ofAR it is
sufficient to replace the eigenvalueszn by their asymptotic
form everywhere. Any errors generated in this way are
most linear int. In this manner, the dependence on the su
mation indexn becomes explicit, and we can apply the Po
son resummation formula@15#, which holds for any continu-
ous, bounded functionf (x), provided its Fourier transform
F(v)[2*dx f(x)cos(vx) is well defined:

1

2
f ~0!1 (

n51

`

f ~n§!5
1

z H 1

2
F~0!1 (

m51

`

FS 2pm

z D J .

~B7!

Here,z is the parameter that controls the convergence of
sums. In our case, we identify

z[A 4p2~ ln l!3l2

~l21!3~l11!
L2(d12)t. ~B8!

The resummation is now straightforward and results in

AR~L,E;t !5
d

2
Ld

4~l21!

p3/2Al ln l
z$11O„exp~2p2/z2!…%

.
d

2
Ld

8

Ap
At/ts$11O„exp~2p2/z2!…%,

where thescale factorfor the short-time scaling is given b

ts~L,E![Ld12
4 sinh~LE/2!

LE exp~LE/2!
. ~B9!

While this characteristic scale obeys the same scaling f
as the late crossover time,~B4!,

ts~L,E!5Ld12ts~LE! with ts~x![
x exp~x/2!

4 sinh~x/2!

we note that the scaling functionts(x) is different from
tc(x).
.
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